Anionic Phosphito-P-Mercury Complexes $[Hg{P(0)-(OEt)_2}^n]^{(n-2)-}$, n = 3,4

PETER-PAUL WINKLER and PAUL PERINGER

Institut für Anorganische und Analytische Chemie der Universität Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria

Received July 9, 1982

The title compounds were formed from HgL₂ and NaL (HL = HP(O)(OEt)₂) and characterized by ³¹P and ¹⁹⁹Hg NMR spectroscopy. Symmetric anionic mercurates [HgL_n]^{(m-2)-} n = 3 or 4, have been characterized with L = halide [1], pseudohalide [1], -SR [2], -SeR [2], -TeR [2], -S₂CNEt₂ [3] (diethylcarbamodithioato), -SiR₃ [4], -GeR₃ [5] and -Co-(CO)₄ [6]. Furthermore methylmercury complexes (L = Me) have been discussed as possible intermediates in the exchange between methylmercury and methyllithium [7]. We report here on the first symmetric mercurates involving Hg-P bonds.

Results and Discussion

Formation of $[Hg{P(O)(OEt)_2}_3]^-$ and $[Hg{P(O)-(OEt)_2}_4]^{2-}$

We have obtained tris(diethylphosphito)mercurate and tetrakis(diethylphosphito)mercurate* by reaction 1. No compounds

$$HgL_2 + nNaL \rightarrow Na_n[HgL_{(n+2)}] n = 1, 2$$
(1)

 $[HgL_n]^{(n-2)}$, with n > 4 could be detected.

 HgL_2 co-ordinates two equivalents of L⁻ in an exothermic reaction leading to crystalline Na₂-HgL₄. The compound is readily soluble in DMSO and pyridine but only slightly soluble in THF, acetonitrile, benzene or methylene chloride. On the other hand mixtures of HgL₂ and NaL 1/1 are readily soluble in DMSO, THF, diethylether or benzene. Evaporation of the solvent yielded only glassy samples of NaHgL₃. Attempts to crystallize the tris(phosphito)mercurate anion with large counterions (*e.g.* as tetraphenylphosphonium salt) were unsuccessful. 31-Phosphorus NMR spectroscopy revealed the tris-phosphito complex in solution to

 $2[HgL_3]^- \rightleftharpoons HgL_2 + [HgL_4]^{2-1}$

and $[HgL_4]^{2-}$ (eqn. 2):

This equilibrium seems to move to the right with increasing donor qualities of the solvent.

be in a disproportionation equilibrium with HgL₂

All the compounds are water sensitive, except for HgL_2 which is stable to water [9]. Hydrolysis of tetrakis(phosphito)mercurate leads to the sodium salt of phosphoricacid monoethylester (I) but no conjugate acid H_2HgL_4 (II) is formed. Compounds of type II are common for many transition metals [8].

31-Phosphorus and ¹⁹⁹Hg NMR Spectroscopy of $[HgL_n]^{(n-2)-}$

The new mercurates were characterized by ³¹ P and ¹⁹⁹Hg NMR spectroscopy: 199-Mercury NMR spectra show the appropriate multiplicity (1:3:3:1 quartet and 1:4:6:4:1 quintet) confirming the number of phosphito ligands co-ordinated to mercury to be 3 and 4. The co-ordination of phosphito ligands to HgL₂ is accompanied by high frequency shift of the mercury resonance (Table I). Surprisingly, the value of $\delta(^{199}$ Hg) for [HgL₃]⁻ is slightly higher than for [HgL₄]²⁻.

The size of the coupling constants (Table I) indicates a one bond coupling, indicating that the P/O ambidentate [8] phosphito ligands are P-bonded. The decrease in the coupling constants from the bisphosphito- to the tetrakis-phosphito-mercury complex is similar to that observed for ${}^{3}J({}^{199}Hg,H)$ in $[Hg(SiMe_3)_n]^{(n-2)-}$, n = 2-4 [4], which has been correlated to the change in mercury hybridization from sp to sp³.

The 31-phosphorus chemical shift increases upon coordination of the third phosphito ligand to 132 ppm, this representing the highest value observed for a phosphito-mercury compound. Co-ordination of the fourth ligand results in a decrease of $\delta(^{31}P)$. Similar

© Elsevier Sequoia/Printed in Switzerland

(2)

^{*}The nomenclature complies with that used in the review of Roundhill et al. [8].

TABLE I. NMR Parameters of $Hg\{P(O)(OEt)_2\}_n$] (n-2)-a

n	δ(³¹ P)	δ(¹⁹⁹ Hg)	¹ J(¹⁹⁹ Hg, ³¹ P)
2 ^b	106	1142	7135
2 ^{c}	105	1061	7375
3 ^b	132	_	5206
3°	129	1956	5283
4 ^b	111	1909	3863
4 [°]	109	1930	3975

^aChemical shifts in ppm to high frequency of 85% H₃PO₄ or aqueous Hg(ClO₄)₂ (2 mmol HgO/cm³ 60% HClO₄). ^bDMSO, 295 K. ^cMeOH, 233 K.

effects were observed for phosphine coordination complexes of phosphito-mercury compounds [10].

Dynamic Behaviour of $[HgL_3]^-$ and $[HgL_4]^{2-}$

The phosphito ligands in $[HgL_3]^-$ and $[HgL_4]^$ were found to be labile on the NMR time scale in contrast to that of HgL_2 : the 31-phosphorus NMR spectrum of a mixture of HgL_2 and NaL 1/1 in pyridine displays broadened peaks and partial collapse of the ¹⁹⁹Hg couplings, indicating intermolecular exchange of phosphito groups. The bandwidth at half-height of the species $[HgL_n]^{(n-2)-}$, n =2-4, present in this solution according to eqn. 2 decreases in the order $[HgL_3]^- \ge HgL_2 > [HgL_4]^{2^-}$. Corresponding results are obtained for a solution in DMSO, except for linewidths being generally larger than in pyridine. The exchange path according to eqn. 3 seems to be predominant. This exchange

$$HgL_2 + [HgL_3]^- \rightleftharpoons [HgL_3]^- + HgL_2 \tag{3}$$

mechanism has also been found to be effective in the system $Hg(SiMe_3)_2/[Hg(SiMe_3)_3]^-$ [4]. Upon addition of $HP(O)(OEt)_2$ or $[P(O)(OEt)_2]^-$ to the tetrakisphosphito-mercury complex, the ³¹P resonances remained unaffected, indicating that there is no exchange between coordinated phosphito ligands and $HP(O)(OEt)_2$ or free phosphito groups respectively occurring on the NMR time scale (eqn. 4).

$$[HgL_4]^{2-} + HL \xrightarrow{DMSO} [LHgL_3]^{2-} + HL$$

$$[HgL_4]^{2-} + L^{-} \rightleftharpoons [LHgL_3]^{2-} + L^{-} \qquad (4)$$

Preparation of NaL

NaL, obtained according to the literature [11] from elemental sodium and HL according to eqn. 5, was found to contain the sodium salt of phosphoric acid monoethylester (I) and ethylphosInorganica Chimica Acta Letters

$$HL + Na \rightarrow NaL + \frac{1}{2}H_2 \tag{5}$$

phonic acid diethylester together with trans-esterification products. These contaminations could not be separated by crystallization, owing to very similar solubilities. They are thought to be formed by reaction 6,

$$NaOP(OEt)_{2} + HY \rightarrow \begin{array}{c} NaO \\ P \\ O \\ O \\ OEt \end{array} + EtOY$$
(6)

 $(HY = HP(O)(OEt)_2)$, which occurs during the exposure of HL to NaL in the course of any slow deprotonation of HL. NaL also reacts with EtOH according to eqn. 6 showing why the use of ethanol as catalyst for reaction 5, as recommended in the literature [12], results in increased amounts of I as byproduct.

Greater purity of NaL can be obtained by the reaction of Na metal with HgL_2 according to eqn. 7:

$$HgL_2 + 2Na \rightarrow Hg + 2NaL \tag{7}$$

Depending on the solvent (*vide supra*), Na_2HgL_4 may precipitate as intermediate. This reaction is also accessible to other alkali metals.

Experimental

NMR spectra were recorded on a multinuclear WP-80 FT spectrometer, chemical analyses were obtained with a Heraeus EA-415. Preparation of Na₂-HgL₄: upon mixing 0.5 mmol HgL₂ [13] and 1 mmol NaL in 3 cm³ of acetonitrile, Na₂HgL₄ precipitates as a colorless, crystalline solid. The mixture is warmed for a short time to 80 °C, and the acetonitrile is discarded. The product is then treated with another 3 cm³ of acetonitrile as above. Yield *ca.* 90%, m.p. 129–131 °C; C: 23.5, H: 4.6; calculated for C₁₆H₄₀HgNa₂O₁₂P₄, C: 24.1, H: 5.0.

Acknowledgement

We thank the Fonds zur Förderung der Wissenschaft, Vienna, for making available the NMR spectrometer.

References

- C. A. McAuliffe, 'The Chemistry of Mercury', McMillan, London (1977).
- 2 J. Liesk and G. Klar, Z. Allg. Anorg. Chem., 435, 103 (1977);

U. Behrens, K. Hoffmann and G. Klar, Chem. Ber., 110, 3672 (1977).

- 3 A. Nieuwpoort, A. H. Dix, P. A. T. W. Porskamp and J. G. M. van der Linden, *Inorg. Chim. Acta*, 35, 221 (1979).
- 4 T. F. Schaaf and J. P. Oliver, J. Am. Chem. Soc., 91, 4327 (1969).
- W. H. Ilsley, M. J. Albright, T. J. Anderson, M. D. Glick and J. P. Oliver, *Inorg. Chem.*, 19, 3577 (1980).
- 5 M. N. Bochkarev, L. V. Pankratov and G. A. Razuvaev, Akad. Nauk. SSSR Ser. Khim., 1980, 2666; L. N. Bochkarev, M. N. Bochkarev, Y. F. Radkov, G. S. Kalinina and G. A. Razuvaev, Inorg. Chim. Acta, 45, L261 (1980);
 - G. A. Razuvaev, J. Organomet. Chem., 200, 243 (1980);
 - M. N. Bochkarev, N. I. Gur'ev, L. V. Pankratov and G. A. Razuvaev, *Inorg. Chim. Acta*, 44, L59 (1980).

- 6 J. M. Burlitch, R. B. Petersen, H. L. Conder and W. R. Robinson, J. Am. Chem. Soc., 92, 1783 (1970);
 A. Cleland, S. A. Fieldhouse, B. H. Freeland, C. D. M. Mann and R. J. O'Brian, Inorg. Chim. Acta, 4, 479 (1970).
- 7 L. M. Seitz and S. D. Hall, J. Organomet. Chem., 15, P7 (1968).
- 8 D. M. Roundhill, R. P. Sperline and W. P. Beaulieu, Coord. Chem. Rev., 26, 263 (1978).
- 9 P. Peringer and J. Eichbichler, J. Inorg. Nucl. Chem., 43, 3027 (1981).
- 10 J. Eichbichler and P. Peringer, Inorg. Nucl. Chem. Lett., 17, 305 (1981).
- 11 G. M. Kosolapoff and A. D. Brown, J. Chem. Soc. Chem. Commun., 1266 (1969).
- 12 H. Binder and J. Palmtag, Z. Naturforsch., 36b, 45 (1981).